Small Pressurized Rover Prototype

Why go to the Moon?

To make better cities and society

 The technology we develop for the moon will make life better on Earth

To expand the sphere of human activity

- The moon will serve as a gateway to Mars

Toyota's vision

We strive to produce happiness for all.

Creating a mobility society for the future

- We are developing new forms of transportation and pursuing new ways of connecting technology and people.

To a

Moving people safely and responsibly

- Safety is a top priority

Continuous innovation

 We seek to continuously innovate and create new technologies, staying ahead of the times

Toyota can provide:

Safe driving technologies on the lunar surface

A rover capable of traversing the tough lunar environment.

- All-Wheel Traction Control
- All-Metal Elastic Wheels (by Bridgestone)

Better energy consumption

Rover designed to accomplish its mission using limited energy resources

- All-Wheel-Traction: Predicts road conditions and controls optimum torque
- <u>Steering Control</u>: The steering system tracks the front wheel ruts to keep the rear wheels on the same path

movie

Small Pressurized Rover Prototype

Small Pressurized Rover

Leverage Toyota's expertise in reliability, durability, and driving performance Maintain safety and comfort for astronauts

Why make this prototype?

Toyota provides:

<u>movie</u>

Safe driving technologies for the lunar surface

A rover capable of traversing the tough lunar environment.

- All-Wheel Traction Control
- All-Metal Elastic Wheels (by Bridgestone)

Better energy consumption

Rover designed to accomplish its mission using limited energy resources

- All-Wheel-Traction: Predicts road conditions and controls optimum torque
- <u>Steering Control</u>: The steering system tracks the front wheel ruts to keep the rear wheels on the same path

SPECIFICATION

SPECIFICATION		_	
ltem	Small Pressurized Rover Prototype	Small Pressurized Rover	Ref) Apollo LRV
Length X Width X Height [mm]	3460 X 2175 X 1865	6000 X 5200 X 3800	3100 X 2060 X 1140
Wheelbase [mm]	2500	4600	2290
Tread [mm]	1830	4400	1830
Wheels	4	6	4
Astronauts	2	2	2
Energy	Battery	Fuel cell + Solar array	Battery
Gross vehicle weight	4.49 Klbs (1.65t)	28Klbs (10.3t)	2.27Klbs (0.835t)
Tire dia.×Width [mm]	Ф960 Х 345	Ф1500 X 600	Ф820 X 230
Tire material	Metal	Metal	Metal

Source: The Apollo Lunar Roving Vehicle (nasa.gov)