- Toward Carbon Neutrality -Toyota's Battery Development and Supply

Masahiko Maeda Chief Technology Officer Toyota Motor Corporation

September 7, 2021

The meaning of carbon neutrality

LCA(Life Cycle Assessment)

Carbon neutrality means zero life cycle CO₂ emissions

Toward carbon neutrality

* TMC summarized based on the data from Japan Meteorological Agency and World Meteorological Organization, etc.

Expanding options for achieving carbon neutrality

> Areas in which renewable energy will be widely used going forward

Rapid electrification 1 BEV has the reduction effect of 3 HEVs

> Areas in which renewable energy

Acceleration of the widespread use of ZEVs

Electrified vehicle lineup toward carbon neutrality

Electrified vehicle sales volume forecast for 2030

Electrified vehicles 8 million units including BEVs+FCEVs 2 million units

Providing our customers around the world with sustainable and practical products

Path toward carbon neutrality: Electrified vehicle global sales

of batteries.

Advancing BEV & PHEV technologies for further dissemination

Technologies supporting full lineup of electrified vehicles

Full lineup of batteries

2030

Evolution of nickel-metal hydride batteries

Evolution of lithium-ion batteries

Expanded use of bipolar nickel-metal hydride batteries featuring new structure

Increased instantaneous power

Evolution of lithium-ion batteries

Practical BEV development based on **BEV-dedicated** platform

New lithium-ion batter

> Evolution of current lithium-ion batteries Innovation in battery structure

Battery development concept

Common to all batteries for HEVs, PHEVs, BEVs, and FCEVs

Highly balancing 5 elements to provide reliable batteries

High level of quality

Safety: Battery control systems

Verification of effect of high loads on battery internals

Simulated experiments to measure polarization of electrolyte components (which generates heat) during charging and discharging

Multiple monitoring of voltage, current, and temperature to detect signs of and prevent abnormal heat

Long service life

Battery capacity maintenance rate

Aiming for world-class endurance with the TOYOTA bZ4X

World-class durability performance target (90%) C-HR/IZOA

2nd-gen. Prius PHV 1st-gen. Prius PHV

Long service life: Applying HEV-honed technologies to BEVs

Inhibiting formation of degraded materials on anode surfaces

- Appropriate anode surface treatment to prevent degradation
- Design and production technology that prevents moisture contained in battery materials from being introduced into the battery
- Adoption of structure that ensures uniform cooling of battery
- Construction of control system that prevents load from being applied to the entire battery

Suppress degradation in battery materials, pack structure, control systems, etc.

One key to extending battery life

High-level quality: Control of metallic foreign matter

Determining the size and shape of foreign matter that can cause battery abnormalities and controlling the effect of foreign matter

Bipolar nickel-metal hydride battery

Taking up the challenge of innovating battery structure for more powerful acceleration

In the new Aqua world's first use as a vehicle drive battery

Battery stack

Battery module

Next-generation BEVs

RAV4 L EV

RAV4 EV

C-HR / IZOA

TOYOTA bZ series First model: Toyota bZ4X

A unique Toyota BEV that utilizes technology cultivated through years of HEV development

Battery cost targets: Integrated vehicle-battery development

Battery development

Greater than 30% reduction in cost of single battery

- Development of low-cost materials: cobalt-free, nickel-free, and new electrode materials
- Manufacturing process innovation: New development of battery manufacturing processes and battery material processes
- New structure: Integrated structure of battery cells and packs to match the vehicle
- Evolution of battery control model: Fuller use of battery capacity with focus on safety, security, and long service life

30% improvement in power efficiency = 30% reduction in battery capacity

Achieve the following by utilizing and developing technologies cultivated through 18.1 million electrified vehicles: Reduction of vehicle driving resistance to suit electrified vehicles Further expansion of energy regeneration Optimal energy/thermal management of entire vehicle and components Optimal efficiency design and control of entire powertrain system

Reducing cost by 30% by improving power efficiency and reducing cost of battery development by $30\% \Rightarrow 50\%$ reduction in battery costs (per vehicle) -In the second half of 2020s

Vehicle development

Power efficiency

kWh / km

(30% cost reduction)

Next-generation lithium-ion battery

[Aims]

Taking on the challenge of developing a wide range of batteries for the second half of the 2020s Providing BEVs equipped with batteries with improved characteristics that enable driving with peace of mind

Characteristics of all-solid-state batteries

High temperature tolerance

Shorter charging time

Progress in development of all-solid-state batteries

June 2020

> All-solid-state battery prototype vehicle built and driving data obtained > Now identifying the merits and challenges of use in vehicles

August 2020

Obtained license plate registration in August 2020 and conducted test drives

Future Development and Challenges of All-Solid-State Batteries

[Merits of all-solid-state batteries]

First considering vehicles that utilize all-solid-state battery characteristics **Overcoming challenges and envisioning rollout from HEVs to BEVs**

Battery procurement and collaboration structure

Future direction based on local conditions

- Strengthen collaboration with partners and consider new cooperative structures
- > Rapid start-up of production within the **Toyota Group**

TOSHIBA

Toyota's battery strategy by 2030

Spread of electrified vehicles, including BEVs

Supply

Build a flexible supply network and production system based

Aiming to flexibly respond to increasing battery demand More than 180GWh **→ 200**GWh

Sustainable & Practical

ΤΟΥΟΤΑ

SUSTAINABLE DEVELOPMENT GALS